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METHODS OF CALCULATING CONTACT HEAT EXCHANGE. 

I. HEAT CONDUCTION OF CONTIGUOUS IRREGULARITIES 

L. S. Kokorev and V. V. Kharitonov UDC 536.21 

The physical laws of heat transfer through a zone of contact between solid bodies are 
analyzed in the paper. The influence of the height distribution of surface irregularities 
on the heat conduction of a contact between rough and wavy surfaces in a vacuum is studied 
in Part I. A system of three integral equations is formulated which allows one to determine 
the heat conduction ~s (W/m2"~ of contact spots in the general case as a function of the 
relative contact area, the contact pressure P (N/m2), and the approach of the surfaces during 
compression. This system of equations admits of a simple analytical solution for elastic or 
plastic deformations of the irregularities if the height distribution of the irregularities 
is assigned in the form of a power function. For example, for the elastic deformations char- 
acteristic of the contact of wavy and rough, not coarsely worked surfaces the heat conduction 
of the contact is determined by the expression 
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where ~ = 2~2/(~i + ~2) is the effective coefficient of thermal conductivity of the con- 
tiguous bodies i and 2; E = 2/[(1 -- ~,)2/E I + (I -- 92)2/E2] is the effective elastic modulus; 

is the Poisson bracket; a is the maximum radius of the contact spots; z = zl + z2 is the 
total arithmetic mean height of the irregularities; e is the exponent, which takes a value 
of from 1/3 to i depending on the height distribution of the surface irregularities, i.e., 
on the cleanness and the means of treatment of the surfaces. It is interesting that whereas 
the mean radius of curvature r and the height of the irregularities vary by tens to hundreds 
of times as a function of the cleanness and the means of treatment of the surface, the maxi- 
mum radius a ~ r/~---z of the contact spots varies little and lies in the range of 10-30 ~m for 
rough surfaces and 0.3-0.6 mm for wavy surfaces. In this case one can approximately assume 
that 1/3 < ~ < 0.6 in the contact of wavy surfaces (most probable value m = 0.4-0.5), while 
in the contact of rough surfaces w > 0.6 (most probable value m ~ 0.7-0.8). 

A comparison of the results of the calculation of the number, size, and heat conduction 
of contact spots with the experimental data of various authors shows that, on the whole, the 
calculation correctly reflects the main laws of heat exchange during the contact in a vacuum 
of both metal and ceramic solid bodies with rough or wavy surfaces. 

Equations are also presented which enable one to estimate the influence of the discrete- 
ness of the contact spot itself and of the degree of oxidation of metal surfaces on the con- 
tact heat conduction. The results obtained indicate the important role of the height distri- 
bution of surface irregularities, the form of which controls the value of the exponent m de- 
termining the dependence of the heat conduction of contact spots on the compression pressure 
and on the height of the irregularities. 
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METHODS OF CALCULATING CONTACT HEAT EXCHANGE. 

II. HEAT CONDUCTION OF GAS GAPS 

L. S. Kokorev and V. V. Kharitonov UDC 536.21 

The influence of the interaction of a gas with contiguous surfaces on the heat exchange 
is studied theoretically. It is shown that the efficiency of the energy exchange between the 
gas and the walls plays a major role in the process of heat transfer through thin gas gaps. 
The thermal resistance I/~ (deg-mZ/W) of a contact gas gap of thickness 6 can be treated as 
the sum of the resistance ~/~ due to the volume heat conduction and the thermal resistances 
i/~fm of the gas--wall boundaries: 

I 6 ! 
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~ ~fm 
where ~ is the coefficient of thermal conductivity of the gas; ~fm = ~P/~-~ is the heat 
conduction of a gap due to free-molecule flow at a gas pressure P (N/m 2) and a temperature 
T (~ R is the gas constant (J/kg.deg); ~ is the reduced accommodation coefficient. 

The derivation of an equation for estimating the accommodation coefficient is given in 
the paper which correctly reflects the main relationships and agrees with the experimental 

data of various authors: 

=I--(I--~o)exp(--U/~r). (2) 

Here $o = ,/2(i + ~) is the minimum value of the accommodation coefficient; V is the ratio 
of the masses of atoms of the gas and of the wall; U is the threshold energy of the gas atoms 
(at a lower energy the atoms are adsorbed on the wall); T is the gas temperature. The ac" 
commodation coefficient is the smaller, the greater the difference between the masses of 
atoms of the gas and of the wail, the weaker their molecular interaction, and the higher the 

gas temperature. 

The fact that the accommodation coefficient, in contrast to the coefficient of thermal 
conductivity of gases, is the larger, the greater the atomic weight of the gas leads to an 
interesting effect, in accordance with Eq. (i): The heat conduction of thin gas gaps proves 
to depend weakly on the nature of the gas filling the gap. This effect was discovered experi- 
mentally inthe investigation of contact heat exchange in the fuel elements of nuclear reac- 

tors. 

According to the calculations conducted, the mean geometrical thickness ~ of a gas gap 
in Eq. (I) depends weakly on the contact pressure, and at low surface compression pressures 
it comprises ~ = (0.5-1.0)zo, where zo is the maximum height of the irregularities, and at 
high pressures it decreases to ~ ~ z, where z is the arithmetic mean height of the irregular- 

ities. 

By substituting into (i) the mean thickness of the gas gap and the free-molecule conduc- 
tion for the accommodation coefficient (2), one can estimate the heat conduction of a gas in 
a contact gap as a function of the type of gas and walls, of the temperature and pressure of 
the gas, of the cleanness of the finish of the surfaces, and of their compression pressure. 
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CONJUGATE PROBLEM OF HEAT EXCHANGE DURING THE NONSTEADY 

LAMINAR FLOW OF A VISCOUS INCOMPRESSIBLE LIQUID IN 

A SEMIINFINITE CHANNEL 

B. E. K~rt UDC 536.24 

A converging finite-difference method is developed for solving the conjugate problem of 
heat exchange during the nonsteady, laminar, two-dimensional flow of a viscous incompressible 
liquid with constant thermophysical properties in the entrance section of a semiinfinite 
plane, annular, or cylindrical channel of constant cross section. The liberation of heat in 
the walls and the injection of coolant at the surfaces of heat exchange with the liquid are 
taken into account in the initial section of the channel. At the initial time a known dis- 
turbance of velocity and temperature is applied at the channel entrance, the heat sources in 
the walls are turned on, and the injection of coolant begins. The nonsteady process of flow 
and heat exchange which develops in the channel is studied. The initial conditions and the 
boundary conditions at the outer surfaces of the walls and the entrance faces are assumed to 
be assigned and consistent. The problem comes down to the calculation of the section of the 
channel which lengthens with time, whose right boundary withdraws from the entrance into the 
channel with a finite velocity, and which stays in a region of small temperature disturbances. 
The temperature boundary condition at it is assigned from the initial conditions, the trans- 
verse velocity of the liquid is assumed to equal zero, and the longitudinal velocity is de- 
termined on the basis of the equality of the liquid flow rate in the given section and its 
supply to the initial section of the channel. The problem is divided into an independent hy- 
drodynamic problem and a therma!problem dependent on it. The hydrodynamic problem is de- 
scribed by the complete Navier-- Stokes equations and is approximated implicitly with respect 
to velocity and explicitly with respect to pressure by a converging difference scheme of 
variable directions, suggested in [i]. The thermal problem is described by two-dimensional 
equations of heat conduction for the channel walls and by the energy equation for the liquid. 
The conditions of conjugation at the contact surface are set up in the form of boundary con- 
ditions of the fourth kind. With a known flow field the thermal problem is the problem of 
diffraction for equations of the parabolic type. For its approximation an economical dif- 
ference scheme of fractional steps is set up, for which the stability is demonstrated and an 
estimate is obtained for the rate of convergence of the approximate solution to the exact so- 
lution in an energy norm. The coefficients of the difference equations, which depend on the 
velocity and its derivatives, are calculated at each step in time from the solution of the 
hydrodynamic problem. The algorithm is realized in the form of an ALGOL program for a BESM- 
6 computer and was tested on the example of a calculation of the steady heat exchange during 
airflow in a plane channel with thermally thin wails of copper. The calculation was carried 
out by the establishment method on a nonuniform spatial grid bunching near the channel en- 
trance and the gas--wall contact surfaces. The calculated profiles of the temperature and 
Nusselt number coincide with those in [2] with an accuracy of 5 and 7%, respectively, which 
allows one to conclude that the method is workable. 
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LAMINAR FLUID FLOW IN A CYLINDRICAL PIPE CONTAINING A 

HELICOID PARTITION 

R. S. Kuznetskii UDC 532.542 

Longitudinal ribbon inserts in the form of a right helicoid are used to create twisted 
streams in pipes in order to intensify processes of heat and mass exchange, separation, and 
sedimentation. The problem analyzed below pertains to this field of engineering applications. 

The steady laminar fluid flow in one of the two identical channels, into which the he- 
licoid partition @ = oz divides the cylindrical pipe r -< i, is described by a system of equa- 
tions (and boundary conditions) which can be converted to the form 

o o% = o: (i) 

v i ( r ,  O)=-v i ( r ,  ~ ) = v i ( 1 , ~ ) = p ( O , * ) = O ,  <o~:=I, ( 2 )  

where z, r, and ~ are the cylindrical coordinates; ~ -= ~0-- oz; vi(r, ~) and p(r, ~) -- ~z are 
the components of the velocity and pressure (-m = const > 0 is the longitudinal pressure 

,) 

) ( i 0 d r o p ) ;  v , -  v --~rvz; L ,  = Dv ,~ O~? -~ r ; Lr=Dvr r Or ' L = Dv -F ~r  . VrV -',- o~ / ; D = vr Or '-- 

1 

r 0~} ; Az=AVz;  Ar'q~ AVr'q~-- r" , : i2 O~ + V r , , /  ; A -  r Or r --dr "':" , -i-o'-"�9 -~q~ ; < . . - >  ~ ,, 
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Ida... (here all the quantities are dimensionless: the linear quantities are normalized to the 

0 
pipe radius a, the velocity to the longitudinal flow-rate velocity vo, and the pressure to 
the quantity pv~); o is the ratio of the circumference of the pipe cross section to the pitch 
of the helicoid; Re = avo/~ is the "longitudinal" Reynolds number (the controlling criterion); 
0 and 9 are the density and kinematic viscosity of the fluid. 

Integration of the system of four equations (i) with the conditions (2) determines the 
four unknown functions vi(r, ~), p(r, ~), and the law of hydraulic resistance ~(o, Re) of 

the channel. 

Let us note some of the conclusions following from the system of equations (i) in its 

general analysis. 

The motion of the fluid in the channel cannot be fully helical (v~ = v r = 0), and, in 
principle, it always, i.e., at any values of Re, includes secondary flows (v r # 0, v~ # 0). 

None of the unknown functions nor m are one-term power functions of o or Re. The latter 
two quantities cannot be reduced to one criterion, which their one-term Combination would be. 

In the particular case of ~ << i with o-Re = idem one can establish the following approxi- 

mate dependences of the quantities on o: 

v r ~ o ,  v ~ o ( v , ~ o ) ,  o z = i n v ,  p ~ o ' ,  o ~ o .  (3) 
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VELOCITY OF TRANSLATIONAL MOTION OF MATERIAL IN A 

ROTATING OVEN 

S. P. Detkov and G. N. Bezdezhskii UDC 669.712.04 

Equations fQr the velocity of the translational motion of material in a rotating oven 
are derived. The equations allow for the inclination of the axis of the oven to the horizon- 
tal and the inclination of the surface of the material to the axis of the oven. The latter 
is obtained in cases of variations of the diameter or physical properties of the material 
along the length of the oven and for support of the material by an annular baffle. The der- 
ivationsof the equations are distinguished by extreme simplicity in comparison with those 
published in the literature. One variant of the equations makes it possible to directly al- 
ipw for the effect of shelves on the motion of the material. In equations published earlier 
this effect is allowed for by means of an empirical factor. It is now clear that the separa- 
tion of the factor is incorrect. 
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HEAT CONDUCTION OF COMPOSITE STRUCTURES BASED ON 

EPOXY COMPOUND AND METAL POWDERS 

V. F. Salokhin, G. G. Spirin, 
and I. F. Galkin 

UDC 536.21 

The experimental investigation was carried out by the nonsteady method in the stage of 
an irregular thermal regime. The heat source (platinum wire) was placed in the plane separat- 
ing two specimens, one of which was the test specimen while the second possessed known ther- 
mophysical properties: It was soft, assuring close contiguity to the test specimen and good 
contact with the heater upon compression. The measurement method was relative. To increase 
the accuracy the system of the balance method was used; i.e., the resistance of the bridge 
circuit was chosen so that the balance of the bridge circuit was retained during the entire 
time of pulsed heating, despite the heating of the platinum wires in the measurement and com- 
pensating cells. The circuit was balanced during the periodic application of electric heat- 
ing pulses with a duration of 0.5 sec. The compensating circuit permitted control of the 
presence of contact thermal resistance at the boundary between the heater and the material 
in the course of the experiment. The error in measuring the heat conduction was no more than 
5%. 

The heat conduction of composites based on E-143 epoxy compound with a number of fillers, 
for which metal powders of zinc, nickel, and iron were used, was measured experimentally. The 
sizes of the metal particles were from 8 to 50 ~m. The measurements were made at a tempera- 
ture of 20~ the dependence of the heat conduction of the composites on the volume concentra- 
tion of the filler was studied. The experimental results show that only for zinc filling with 
particles of spherical shape does the heat conduction of the system coincide with the calcu- 
lation for the heat conduction of mixtures with closed inclusions; for iron and nickel pow- 
ders the agreement occurs in the region of low concentrations of filler, not exceeding 0.i~ 
At higher concentrations the disagreement is considerable: The calculated data run consider- 
ably lower than the experimental data. The increase in the heat conduction of such systems 
containing components with high heat conduction can be connected with the formation of the 
mechanism of skeleton heat conduction. The formation of a skeleton from inclusions of nickel 
and iron is facilitated by the dendritic shape of their particles. 

It is noted that for structures having inclusions with a high thermal conductivity the 
equation for the effective heat conduction can be obtained on the basis of the obvious con- 
cept of the "diffusion length of the temperature field." 
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TEMPERATURE FIELD OF A THREE-LAYERED PLANE WALL WITH 

BOUNDARY ~ONDITIONS OF THE SECOND KIND 

A. G. Gurevich and I. VI Balter UDC 691:699.8:536.1:620.179.1 

The temperature field of an infinite three-layered plate, heated by heat fluxes of con- 
stant power and with a uniform initial temperature distribution, is analyzed. 

The solution of the stated problem, obtained with the help of a Laplace integral trans- 
form, consists of an asymptotic part and the sum of an infinite Fourier series. An analysis 
of the solution shows that at large Fourier numbers (Fo) the sum of the infinite series ap- 
proaches zero and a quasisteady field of temperature gradients is established in the three- 
layered plate. 

The value of the Fourier number, equal to [Fo], beginning with which the temperature 
field at a given point N i is described with an assigned accuracy ~ by the asymptotic part of 
the solution, is the time of onset of the quasisteady regime. 

Since in practical calculations the sum of the infinite series is replaced by some par- 
tial sum n, we have [Fo] = [Fo(~, Ni, n)]. 

An analysis of the dependence [Fo] = [Fo(~, Ni, n)] shows that a calculation of the time 
of onset of the quasisteady thermal regime in a plate with allowance only for the first term 
of the series often leads to considerable errors in the determination of [Fo]; one observes 
a nonunlformity of the onset of the quasisteady regime over the thickness of the plate, due 
not only to the dependence of the sum of the series on the coordinate, but also to the para- 
bolic character of the asymptotic part of the solution, with the coordinate N i of the mini- 
mum of the function [Fo(~, Ni, n)] depending on the ratio of the heat fluxes at the plate 
boundaries and on the thermophysical characteristics and geometrical sizes of the individual 
layers of the plate. 

The use of the solution obtained to calculate the temperature field of a three-layered 
plate with Fo < [Fo] is connected with the necessity of calculating the sum of an infinite 
series. Therefore, one must preliminarily estimate the convergence of the Fourier series 
which enter into the solution. 

For this purpose the sequences of partial sums fn(Ni, Fo) (n = I, 2, 3, ...) for dif- 
ferent three-layered plates and heating regimes were studied on a computer. 

From an analysis of the dependence fn(Ni, Fo) it follows that fn_~(Ni, Fo = 0) = 
fn=(~o_6o)(Ni, Fo = 0) • 10 -4 , with the convergence of the series improving with an increase 
in Fo, which allows one to determine the number of series terms sufficient for the calcula- 
tion of the sum with any accuracy assigned in advance for an arbitrary Fo; the absolute value 
of the sum of an infinite series is not always a monotonically decreasing function of time; 
in some cases the sum of the series is also nonmonotonic at Fo > [Fo], which does not lead 
to violation of the laws of the quasisteady regime, however, when ~ ~ 10 -3 �9 

In addition, the characteristic equation ~(~) = 0 of the problem under consideration 
was investigated. An analysis of the function ~(B), which consists of the sum of four sines, 
made it possible to establish its period and the number of roots of @(~) lying in an inter- 
val equal to the period, which considerably simplifies and simultaneously guarantees the 
search for all the roots of the characteristic equation. 
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